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Dancing for a decision:
a matrix model for nest-site choice by honeybees
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A mathematical model is formulated for decision making by honeybees during nest-site choice, using a
population matrix model. This model explains how the observed dynamics of the nest-site scouts’ dancing
can reliably lead to a choice of the best nest site available.
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1. INTRODUCTION

In the spring a swarm of honeybees (Apis mellifera) may
leave the hive and settle in a cluster nearby while scouts
search for a suitable cavity for a new home. A scout that
finds a suitable nest site returns to the swarm and seeks
to recruit other scouts to visit the site. Scouts communi-
cate the location and quality of the site by dancing
(Lindauer 1961; Camazine et al. 1999; Seeley & Buhrman
1999, 2001) in a way similar to that by which foragers
communicate the presence and quality of forage patches
(see Seeley 1995; Seeley et al. 2000). While the colony is
house hunting many scouts may be dancing on the swarm
for many different sites, but eventually nearly all the
dances are for a single site and the swarm sets off to settle
in the chosen nest site.

Scouts’ assessment of site quality covers several factors
(Seeley 1977; Seeley & Morse 1978). Only 22% or fewer
of individual scouts visit more than one site (Camazine et
al. 1999; Seeley & Buhrman 1999) and it is highly unlikely
that direct comparisons of sites by individual scouts play
any part in the swarm’s choice of a new home (Visscher &
Camazine 1999). Even with most scouts visiting just one
site, the dynamics of the dancing alone enables the swarm
to choose a good site. Scouts that return from a high-
quality site dance vigorously with faster return phases
between waggle runs and with more waggle runs per dance
than scouts returning from poorer sites (Seeley & Buhr-
man 2001). The number of waggle runs in each dance
performed by each scout, generally speaking, declines with
every successive return to the swarm, independently of the
quality of the nest site (Seeley & Buhrman 1999) and each
scout will eventually stop dancing, although she may con-
tinue to visit the nest site (Camazine et al. 1999). In
almost every case the swarm is able to come to a decision
on where to live and will choose the best site of those
advertised by dancers on the swarm (Lindauer 1961;
Seeley & Buhrman 2001).

This swarm decision-making process has previously
been modelled by Britton et al. (2002), using a differential
equation formulation, incorporating ideas from decision
theory and epidemiology. The scouts are modelled as a
population with individuals who switch from one site to
another or from being committed to a choice to being
uncommitted. The model does not explore how the mech-
anics of the dance communication reliably produces a
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unanimous decision for a good site. In this paper, I explore
the effects of observed dance behaviour during nest-site
selection, by using a model that tracks both scout numbers
and the number of dances for different sites. I present
theory that explains how the scouts’ dancing behaviour
can reliably produce a good unanimous decision even
though each scout only knows about a single site.

2. CONSTRUCTING A MODEL FOR SITE
SELECTION BY DANCING

(a) The general structure of the model
To formulate a model for the dynamics of scout dancing

and nest-site choice, I focus both on the dances and on
number of the scouts and examine how the dances decay
(or age) and propagate (or reproduce) on the swarm.

Seeley & Buhrman (1999) observed that, generally
speaking, the number of waggle runs was less each time a
particular scout returned from the nest site that she was
advertising and that after some time a scout might stop
dancing altogether, even if she was dancing for the site
that was eventually chosen. Therefore, I assume in the
model that the number of waggle runs in a scout’s dance
decreases after each successive visit to the nest site and
ceases after a certain number of visits, denoted by vf.
Scouts may also abandon dancing for a site at any visit
with the probability px. Here, I assume that px is constant.
However, px may vary, depending on how many dances a
scout has performed, without affecting the overall con-
clusions of the model. I also assume, following the obser-
vations of Seeley & Buhrman (2001), that the better the
quality of the nest site, the higher the number of waggle
runs that a scout performs at any given visit. Dances
recruit other scouts to nest sites and these new recruits in
turn come back to the swarm and dance. Therefore, in
some sense, the dances reproduce themselves.

Given that dances can be considered to decay and to
reproduce in this way, the whole process of information
exchange through dancing can be recast in a population
biology format with populations of dances for different
sites. Within each population, different dances can age, as
the scout repeatedly visits the site; die, if the scout stops
dancing for the site; or reproduce when the scout recruits
new dancers to the site. I track these dance populations
by tracking the number of scouts performing dances of
different ages for each site.
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If I assume that all dances are synchronized with each
other, then the dancing dynamics can be represented by
using Leslie matrices. This is equivalent to saying that the
dances are like populations that reproduce once per sea-
son rather than continuously throughout the year. The
effect of this assumption is to standardize the time
between dances; it eliminates the effects of travel times
and delays owing to bad weather, night-time or other fac-
tors. Modelling dancing in this way, therefore, implicitly
assumes that none of these factors are of primary impor-
tance in the process of choosing a nest site and that it
makes no fundamental difference to swarm decision-
making whether dances are distributed continuously in
time or occur synchronously.

(b) Dancing behaviour of scouts
The observations of Seeley & Buhrman (1999, 2001)

showed that the number of waggle runs that a scout per-
formed on her return to the swarm depended on the qual-
ity of the site that she was advertising and the number of
times that she had previously danced for that site. A scout
dancing for a high-quality site performed more waggle
runs per dance and performed more waggle runs per
second than a scout dancing for a site of moderate quality
(Seeley & Buhrman 2001). The number of waggle runs
performed per dance also declined at each successive
return to the swarm (Seeley & Buhrman 1999). The
scouts can therefore be divided into different populations
with each population dancing for a different site. For a
given population, the number of waggle runs W(m) in the
mth dance that the scout performs could, for example, be
modelled, mathematically by

W(m) = f(Q)exp(2m/k ), (2.1)

where k is a constant and f(Q) describes how the number
of waggle runs depends on the quality of the site Q. As
the number of waggle runs increases with site quality, f(Q)
must increase as Q increases. Equation (2.1) represents
the number of waggle runs as decreasing exponentially
with dance number until the final visit when m = vf. This
is irrespective of the quality of the site. Fig. 8 in Seeley &
Buhrman (1999) indicates that this is a reasonable
assumption.

Other expressions for W(m) will work equally well pro-
vided that W(m) increases with Q and, to reflect obser-
vations of dancing scouts, decreases with m.

(c) Recruiting new scouts
Visscher & Camazine (1999) observed that potential

recruits choose at random which dance they will follow.
In addition, I assume that there is a constant probability
pr, of a potential scout on the dance floor being recruited
by a single waggle run. Then the number of scouts
recruited to a particular site, say site i, is

total number
of potential scouts on ´

the dance floor

probability of
recruiting one scout

per waggle run

´
total number of waggle runs for site i

total number of waggle runs for all sites
.

This means that, in the model, new scouts are more likely
to be recruited to good sites, as these dances contain more
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waggle runs, and are more likely to be recruited to sites
that are being advertised by more scouts as the total num-
ber of waggle runs for these sites is high. If we denote the
number of scouts doing their mth dance for site i at time
t by bi(m, t), the number of waggle runs in the mth dance
for site i by Wi(m), and the total number of potential
scouts on the dance floor by nd f then we can write the
number of scouts recruited to site i in each synchronized
dance episode as

ndf pr

O
m

Wi(m)bi(m,t)

O
i
O
m

(Wi(m)bi(m,t))
= ndf pr

O
m

Wi(m)bi(m,t)

Wtot(t)
, (2.2)

where Wto t(t) = O
i
O
m

(Wi(m)bi(m,t)).

(d) Putting it all together
If we assume that all dances are synchronized, we can

construct a Leslie matrix model which will allow us to find
the number of scouts for site i at time t, given that we
know the number of scouts dancing for all the sites at the
previous dancing episode at t 2 1. As of the nature of the
model, t is always an integer and denotes the number of
the dance episode. So, we have

1
bi(1,t)

bi(2,t)

bi(3,t)

bi(vf,t)

2 = 1
ndfprWi(1)
Wtot(t 2 1)

ndfprWi(2)
Wtot(t 2 1)

ndfprWi(3)
Wtot(t 2 1)

…
ndfprWi(vf)
Wtot(t 2 1)

1 2 px 0 0 … 0

0 1 2 px 0 … 0

0 0 … 1 2 px 0

21
bi(1,t 2 1)

bi(2,t 2 1)

bi(3,t 2 1)

bi(vf,t 2 1)

2 .

(2.3)

This describes the changes over time in the numbers of
scouts dancing for each site. In principle this model could
be used to perform simulations to explore how the popu-
lations of scouts dancing for different sources evolve. It is
far more useful and illuminating, however, to perform a
general analysis using tools from the mathematical theory
of Leslie matrix models.

3. OUTCOMES OF THE MODEL

The total population Pi(t) of scouts dancing for site i at
time t is given by

P i(t) = bi(1,t) 1 bi(2,t) 1 bi(3,t) 1 … 1 bi(vf,t)

=O
m

bi(m,t). (3.1)

If the dominant eigenvalue ld of the matrix in equation
(2.3) is greater than 1, this population will increase expo-
nentially (at a rate proportional to lt

d). If the dominant
eigenvalue is less than 1, the population of scouts dancing
for site i will decrease exponentially. For the entire swarm
the population of dancers for some sites might be decreas-
ing while populations of dancers for other sites are increas-
ing. At the end of the site-selection process Seeley &
Buhrman (1999) observed that only one site was adver-
tised. The populations of dancers for other sites had all
declined to zero.

The eigenvalues, l, of the matrix are given by the
characteristic equation
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lv
f 2

ndf

Wtot(t)
Wi(1)l(v

f
21) 2

ndf

Wtot(t)
(1 2 px)Wi(2)l(v

f
2 2)

2
ndf

Wtot(t)
(1 2 px)2Wi(3)l(vf 2 3) 2 … 2

ndf

Wtot(t)
Wi(vf) = 0 (3.2)

(see Rorres & Anton 1977). This can be rewritten in terms
of qi, which is a function of l

qi(l) =
Wi(1)(1 2 px)

l
1

Wi(2)(1 2 px)2

l2

1
Wi(3)(1 2 px)3

l3 1 … 1
Wi(vf)(1 2 px)vf

lvf

=
Wto t(t)

ndf

. (3.3)

If px is not constant but varies between dance episodes,
then the powers of (1 2 px) in equation (3.3) will instead
be products of terms of the form (1 2 px(m)) where px is
a function of visit number m.

Every different site will have its own version of qi but
the expression on the right-hand side of the equation is
the same for every site at any given time. This expression
will change with time as the number of scouts at each site
and the distribution of their dance ages changes with time.
On the other hand, the expression for qi(l) does not
change with time but does depend on the quality of the
site, because Wi(m) is a function of site quality.

Figure 1 illustrates the qi(l) curves for different sites.
The time-varying quantity Wto t(t)/ndf, where Wto t(t) is
defined in equation (2.2), is represented by a straight hori-
zontal line. The dominant eigenvalue for each site is given
by the value of l, where the q curve for that site intersects
the Wto t(t)/ndf line. If more than one site has a dominant
eigenvalue greater than one, then the number of scouts
dancing for each such site increases. Hence, with time,
Wto t(t) will increase and ndf may decrease as more scouts
are recruited to these sites. (If there are lots of sites with
ld , 1 then Wto t may initially decrease, but as time pro-
gresses it will start to increase.) This means that the
Wto t/ndf line will move upwards as Wtot increases or ndf

decreases, while the qi(l) curves stay fixed. As a result the
dominant eigenvalue ld for each site, that is the value of
l where the qi curves and the line intersect, will decrease.
So as Wto t increases, the dominant eigenvalue for some
sites will move from being greater than 1 (with the number
of scouts dancing for that site increasing) to less than 1
(when the number of scouts dancing for that site will
decrease). Eventually, provided that the qi curves are suf-
ficiently well separated, there will only be one site left that
has an increasing number of scouts dancing for it. This
will become the chosen site. The positions of the qi curves
are determined by the number of waggles in each dance
typically performed by returning scouts, that is Wi, with
Wi greater the further right the curve.

If there is no site whose quality is high enough for its
associated dominant eigenvalue to be greater than 1, then
the numbers of scouts dancing for all sites will decline as
the number of dancers at each site declines. This will
lower Wtot/ndf until one site has ld . 1. The number of
dances for this site will then increase while dances for
other sites continue to decline. Hence, this analysis pre-
dicts that the site for which the scouts dance most vigor-
ously should always be the chosen site, regardless of the
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Figure 1. Diagram illustrating how the dominant eigenvalues
change as Wtot/ndf increases. The qi curves are independent
of time and remain fixed. The dominant eigenvalues for
each site are l1, l2 and l3, respectively, and are determined
by the values of l where the dashed line intersects the qi

curves. (a) For a low value of Wtot/ndf two sites have ld.
(b) As Wtot/ndf increases, l2 becomes less than one for the
lower quality site 2.

number or quality of alternative sites that the scouts are
advertising.

4. COMMENTS AND CAVEATS

(a) The role of dance attrition
Both Camazine et al. (1999) and Seeley & Buhrman

(1999, 2001) observed that scouts dance vigorously on
first visiting a site but later the number of circuits in their
dances declines until they cease dancing altogether. They
may continue to visit the site but once dancing has
stopped they have no role in propagating the dance. Is
dance attrition necessary for this model and how does it
operate within the model?

Ideas from population biology give insight into the
effects of dance attrition. For a population to survive, each
individual must, on average, at least replace itself, other-
wise the population eventually becomes extinct. Here,
scouts dancing for less favoured sites are not able to each
recruit one or more new dancers to the site and so eventu-
ally the dance becomes extinct. Dancers for good sites,
however, do, on average, recruit at least one new dancer
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each and so the dance continues to exist. As the decision-
making progresses it becomes harder to recruit dancers as
the pool of potential scouts becomes smaller and so dances
for all but the best site eventually become extinct.

From a more mathematical perspective, the expression
for qi(l) is, in mathematical terms, a polynomial in 1/l.
The properties of this polynomial are dependent on the
behaviour of the scouts advertising nest sites. If scouts
continued dancing then this polynomial would be infinite;
it would go on forever with higher and higher powers of
1/l. When l . 1 then each succeeding term would get
smaller and the polynomial would tend to a limit that can
easily be graphed as the curve qi. However, if l , 1 then
the polynomial would not sum to a finite limit unless
Wi(m)(1 2 px) rapidly became smaller as m increased, to
balance the increasing powers of 1/l. Hence, either there
is a maximum number of times a scout dances or the num-
ber of circuits that a scout covers in each successive dance
must drop off rapidly or there is a finite probability that
a scout will abandon dancing after each visit. This argu-
ment is somewhat technical; however, the main point is
that without dance attrition this model cannot be properly
formulated or applied.

(b) Randomness and start-up effects
The model represents a highly simplified version of

swarm decision making by dancing. In addition to the obvi-
ous assumption that dances occur synchronously, the
model has the implicit assumptions that there are no ran-
dom effects in the propagation of dances on the swarm and
that the swarm’s decision is only reached once the age-
structure of the dances has settled down to its equilibrium
structure (Caswell 1989), so that the balance of different
aged dances for a particular site is not changing, only the
total number of dances. Only at this stage is the dominant
eigenvalue a guaranteed indicator of the outcome of the
model. Clearly, the population of scouts dancing for a good
site that is discovered late in the decision-making process
may not reach this equilibrium before the decision is made.
Hence, the results of the model may not apply in this case.

Random effects can be introduced into the decision-
making process through individual differences in scouts’
dancing; through different scouts assessing the quality of
a site differently; or through random effects when bees on
the swarm follow dances. In the model, such random
effects would, broadly speaking, tend to smear out the qi

curves, making them fuzzy lines rather than sharp lines
and hence reduce the clear-cut nature of the decision that
the model predicts. This model, however, being based on
discrete individuals, can be readily adapted to take
account of various sources of random behaviour.

5. DISCUSSION

(a) The model and observed bee behaviour
The matrix formulation of this model predicts that once

scouts have settled down to dance for a particular site then
either the number of dancers for that site will be growing
exponentially (for ld . 1) or be declining exponentially
(for ld , 1). The model further predicts that the number
of dancers for a particular site can grow and then decline
as the total numbers of dancers increases. This
exponential growth prediction agrees well with obser-
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vations of Camazine et al. (1999) of a swarm, dancing for
two similar sites that reached a point where dances for the
favoured site increased exponentially while dances for the
unsuccessful site levelled off. The model is also consonant
with the diagrams of swarm dancing presented by Lin-
dauer (1961) and Seeley & Buhrman (1999) where the
number of dances for the successful site are observed to
grow during most periods of observations while the num-
ber of dances for unsuccessful sites may grow initially but
eventually declines until no dances are observed for
those sites.

The model predicts that the single, best site will be
chosen but swarms have been observed where the bees
either cannot choose between sites (Lindauer 1961) or do
not choose the best site that scouts have visited (Seeley &
Buhrman 2001).

If we assume, in the first case, that the scouts have
found two nest sites of very similar quality more or less
simultaneously, then dances for both sites will settle down
at about the same time and will have very similar qi(l)
curves. Hence, it would be highly likely that the number
of scouts dancing for each of these sites would both be
growing or both declining, given that randomness in real
swarms would be likely to smear out the qi(l) curves.

In the second case, where the bees chose the lower qual-
ity site over the high-quality site, the relative times of dis-
covery of the sites and the vigour of the first few dancers
may have had a significant impact on the swarm’s choice.
It is apparent from the data presented by Seeley & Buhr-
man (2001) that the high-quality site was discovered after
the lower quality site and by the time that the number of
scouts (and hence, I infer, the number of dances) for the
lower quality site started to grow rapidly, recruitment to
the high-quality site had barely begun and probably not
settled down to the point where the age-structure of the
dances had reached equilibrium. Seeley & Buhrman make
the remark, in fact, that dancing for the high-quality site
was noticeably weak.

This model indicates that the numbers of potential
scouts on the swarm may influence the time that the col-
ony needs to make a decision. If potential scouts are
removed this reduces ndf in the model and raises the hori-
zontal Wto t/ndf line in figure 1 and speeds up decision mak-
ing. Alternatively, if scouts that are already dancing are
removed then this will depress the Wtot/nd f line and
decision making will take longer. In fact, if dancers are
continually removed then the swarm may never come to
a decision.

(b) Comparison of dancing for nest sites with
dancing for forage sites

Advertising and recruiting foragers to forage sites
appears to be similar to recruiting scouts to nest sites but
has essentially different aims and outcomes. In selecting a
nest site, the colony is making a single choice among
resources that mostly do not vary over the time that the
decision is being made; in foraging the colony distributes
its foragers over several sites, whose properties may change
significantly over a few days or during the course of a sin-
gle day, in such a way as to maximize the amount of nectar
brought into the hive (Seeley 1995). Therefore, the dur-
ation and liveliness of foragers’ dances may change as the
quality of the source changes (Seeley et al. 2000) or as the
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number of available unloaders inside the hive varies
(Seeley 1995). Hence, in a corresponding model for forag-
ing, the polynomials qi(l) would not be fixed but would be
changing continually with time as the foragers dynamically
assess the perceived quality of the source that they are
advertising. As foragers continue dancing as long as their
source is profitable and the nectar that they collect is in
demand (Seeley 1994), the number of waggle runs W(m)
does not necessarily decline with each successive return to
the hive. Hence, the nature of the qi(l) polynomials will
be quite different in a foraging model compared with the
nest-site selection model.

(c) Consensus versus quorum sensing
This model implicitly assumes that a nest site is chosen

by reaching a consensus among the dancing scouts
although it could be adapted to model decision making by
quorum sensing. Although it is known that the ant Lepto-
thorax albipennis uses quorum sensing to select among nest
sites (Pratt et al. 2002) the experimental evidence for bees
is not yet available although experiments are underway
(Seeley 2002). There is no obvious reason why ant and
honeybee behaviour in nest-site choice should be the
same—ants and bees use different methods to recruit for-
agers, for example. If bees are using consensus decision
making rather than quorum sensing, it is easier to under-
stand why dance attrition occurs. Dance attrition is vital
for reaching consensus but not for reaching a quorum
where the first site to attract a certain number of visitors
would be selected, regardless of what is happening at other
sites. In fact, dance attrition would tend to increase the
time needed to reach a quorum. This may be useful in
allowing time for scouts to find alternative sites, but will
also increase the time that the swarm remains in an
exposed position in the open air.

(d) Formulating models for swarm decision
making

When constructing a model, the type of formulation
that is chosen for the model should reflect the scale and
nature of the process which is being modelled. Models for
self-organization in social insects are rich and structurally
diverse because social insect behaviour occurs mostly on
intermediate spatial scales, where the effects of the indi-
viduals cannot be smoothly averaged out, but nor can
every individual be modelled explicitly. Some insect
behaviour can be well represented by differential equation
models which give a smooth representation of the colony;
for example the heat flow through a stationary swarm of
bees (Myerscough 1993; Watmough & Camazine 1995)
or forager recruitment in a large colony of small ants
(Beekman et al. 2001). Other types of colonial behaviour
have been successfully modelled by using two different
types of formulation; for example honeybee foraging,
where De Vries & Biesmeijer (1998) use individually ori-
ented models whereas Camazine & Sneyd (1991) and
Cox & Myerscough (2003) use differential-equation
formulations. Some colony behaviours must be modelled
at an individual level as the important behaviours are aver-
aged away if a higher-level approach, such as differential
equations, is used. Crowding-based models, where insects
have finite size, is one example of this (O’Toole et al.
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1999). Each approach emphasizes a different aspect of the
actual system that is being modelled.

The model of Britton et al. (2002) for swarm decision
making uses a differential-equation formulation to get a
grand, overall perspective of the decision-making pro-
cesses. This model is easy to formulate, easy to analyse
and fits in well with previous work on decision making.
The differential-equation formulation, however, makes it
difficult to model aspects of the decision process that are
specific to honeybees, such as the dynamics of the scout
dances and the detailed mechanics of how the scouts use
dances to convey and assess information. The differential-
equation model predicts that there are regions in para-
meter space where a deadlock is reached with stable num-
bers of scouts dancing for each of two sites. It also predicts
that under some circumstances support for all sites will
die away when all sites are poor quality and then no
decision will be made. These outcomes of the differential-
equation model indicate that this model has not com-
pletely captured all the important mechanics of the bees’
decision making. The emphasis on scouts switching
allegiance from one site to another is also, perhaps, a little
too strong, given that Visscher & Camazine (1999) con-
clude that removing switchers from the system makes no
difference to either the speed or the accuracy of the bees’
decision making.

I have chosen here to use a formulation that allows the
individual scouts, and hence the number of waggle runs
advertising each site, to be counted, although individuals
are not tracked explicitly, as is done in many individual-
based models. This allows the observed dance behaviour
that is specific to scouts advertising nest sites to be incor-
porated into the model. This model also describes the flow
of information that is contained in the waggle runs as the
decision-making process proceeds and shows how the
transmission of information on lower-quality sites decays
while information on high-quality sites spreads increas-
ingly rapidly. Scouts that continue to visit a site but do
not dance also carry information. This model is flexible
and could easily be extended to monitor information held
by non-dancers. This formulation can also be readily
adapted to model information flows during foraging for
food.

Indeed, the combination of flexibility and robustness is
a strength of this population-matrix model. It can easily
represent many different groups of scouts, each dancing
for a different source, but at the same time predicts that
one site will always be chosen. This choice will be made
regardless of the quality of the available sites; the swarm
is able to choose the best of a bad lot as well as choosing
from high-quality sites.

Finally, what insight does this modelling give into the
nature and behaviour of individual honeybees? For the
decision-making process to work as modelled it is essential
that scouts’ dances decline with each successive visit or
cease altogether after a certain number of dances. Less
obviously, each scout must also have an innate ability to
accurately assess the quality of a site and tune her dancing
appropriately. This assessment must be the same or very
similar from bee to bee. Without this innate similarity
between all the scouts, a decision process where each
scout only has information about one site could not con-
sistently agree on the best site.
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